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EXECUTIVE SUMMARY

CONCRETE PATCHING MATERIALS AND
TECHNIQUES AND GUIDELINES FOR HOT
WEATHER CONCRETING

Introduction

High early strength (HES) concrete is increasingly being used to
repair damaged concrete pavement sections. Its use enables
repaired pavement to be opened within hours of placing the
concrete, reducing both delays for the traveling public and
exposure to traffic for construction personnel. However, the use
of HES concrete also presents challenges due to strict require-
ments for opening strength and severe penalties for not achieving
the target strength. This project examined failure to obtain long-
term strength in long patches in concrete pavements.

Findings

When the temperature of HES concrete patches is expected to
be elevated and accelerating admixtures are used, the balance of
sulfates need to be considered. While the experiments showed that
additional sulfate can improve the effectiveness of accelerating
admixture, this is likely not practical for field use. Rather,

experiments to determine whether the sulfate balance is attained at
high temperatures with admixtures may be useful for suppliers.

Since these mixtures are mixed at a low water-to-cement ratio,
they are prone to self-desiccation that leads to shrinkage and
causes hydration and strength development to cease. Internal
curing can be used to supply additional curing water to HES
mixtures, thus improving durability, hydration, and strength
development (i.e., mechanical properties). Modified maturity
methods that account for self-desiccation can be used to increase
the accuracy of target strength predications. This would consist of
adding a term to standard current practices to account for self-
desiccation.

Implementation

This project examined why INDOT patching mixtures were not
obtaining the strength predicted by standard testing methods. It
was determined that the use of admixtures at a high temperature
resulted in challenges with the balance of sulfates that interfered
with the hydration process. These findings were presented to the
study advisory committee, at Purdue Road School, and at the
annual meeting of the American Concrete Paving Association.
Furthermore, self-desiccation limits strength development, and
this research report outlines a procedure that incorporates a term
to be added to the maturity method to account for how strength
development can be limited by self-desiccation.
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1. INTRODUCTION

Billions of dollars are being spent by federal, state,
and local agencies each year in an effort to improve
the aging roadway infrastructure of the United States
(American Society of Civil Engineers, 2013; U.S. Depart-
ment of Transportation Federal Highway Administra-
tion, 2010, 2015). In an effort to reduce disruption to the
travelling public, these agencies have also begun short-
ening construction times by utilizing weekend only and
nighttime construction more and more to rehabilitate
interstates, highways, etc. (Bryden & Mace, 2002;
Cottrell, 1999; Shane, Kandil, & Schexnayder, 2012).

Overnight concrete pavement patching is a method
of rapid roadway rehabilitation utilized by the Indiana
Department of Transportation (INDOT) and other trans-
portation agencies. High early strength (HES) concrete
patching materials are used to repair damaged pavement
sections thereby enabling the repaired pavement to be
opened to traffic at an early age. A common approach
for rapid repair consist of closing a pavement section
after evening rush hour traffic, removing the existing
pavement, preparing the patch area, placing a HES
concrete repair material, and opening the repaired
pavement to traffic loads the following morning (Todd,
2015; Wilson et al., 2016). In this repair methodology,
the HES concrete is expected to have gained the target
strength over-night so that it can be opened to traffic
early the following morning. As a result, traffic delays
during day-time hours are kept to a minimum. The
rapid repair of concrete pavement is attractive because
the traveling public is not delayed by the repair of the
pavement and costs associated with traffic delays are
kept to a minimum.

Although rapid repair of concrete pavement is attrac-
tive, inherently it has challenges. Contractors recognize
that there is a high risk for not achieving the target
strength in the allotted time, thus incurring penalties.
Because of this, bid price is adjusted to account for the
costs of the penalties, requiring higher average bid
prices for these types of projects (Ellis & Kumar, 1993;
Hinze & Carlisle, 1990-2; Minchin, Thurn, Ellis, &
Lewis, n.d.). In addition, these type of projects have
strict requirements for opening, requiring simultaneous
construction tasks including site specific traffic control.

The challenges associated with successfully complet-
ing a HES concrete repair job safely, on time, and at or
above target strength frequently result in the contractor
modifying the mixture design and curing procedures.
These modifications can have a negative impact on
durability properties of the concrete. Modifications
include use of the following:

1. admixtures such as accelerators (which have been obser-
ved to alter the sulfate balance and alter strength gain
(Paulini, 1990; Roberts & Taylor, 2007; Todd, 2015;
Wilson et al., 2016);

2. high cement contents (and often a lack of supplemen-
tary cementitious contents which have been observed to
increase the potential for deicing salt damage (Monical,
Villani, Farnam, Unal, & Weiss, 2016);

3. heated blankets for high temperature curing (which may
result in an increased potential for thermal cracking,
especially when combined with high cement contents
(Bagade & Puttaswamy, 2009; Deo, 2016; Gajda, 2008);
and

4. low water-to-cement ratios (w/c) that are susceptible to
the consequences of self-desiccation.

While not immediately obvious, self-desiccation is
important in these materials because consequences can
include excessive shrinkage, shrinkage cracking, and a
reduced rate of strength gain.

This report aims to help INDOT improve the perfor-
mance and predictability of patching materials with
high early strength and long-term durability. By impro-
ving the predictability and performance of these materi-
als, INDOT can reduce costs associated with traffic
control and the risks associated with liquidated damages;
thereby reducing the overall cost of construction.

Chapter 2 of this report discusses the main findings
of the literature review regarding HES concrete patching
materials for the rapid repair of concrete pavements.

Chapter 3 discusses the main findings of the project,
and a brief summary list is listed below.

Site visits for rapid repair using HES concrete (3.1)

Temperature of field-produced concrete (3.2)

Flexural strength under variable curing conditions (3.3)

Use of nondestructive testing (NDT) methods for

strength determination (Windsor Pin) (3.4)

5. Effects of self-desiccation on HES concrete (role of
water) (3.5)

6.  Accelerator dosage variations at ambient and elevated
temperatures (optimum sulfate levels) (3.6)

7.  Activation energy determination (3.7)

8.  Durability and fracture mechanics of materials contain-
ing accelerating admixtures cured at ambient and eleva-
ted temperatures (3.8)

9.  Shrinkage and stress reduction (3.9)

RRb=

Chapter 4 describes the main conclusions for impro-
ving the performance, predictability, and durability of
HES concrete patching materials for the rapid repair of
concrete pavements.

Chapter 5 lists two master’s theses that provide more
detail on the findings of this report.

2. MAIN FINDINGS OF THE LITERATURE
REVIEW

Transportation infrastructure in the United States
is aging. With the U.S. Interstate System nearing its
60th Anniversary (U.S. Department of Transportation
Federal Highway Administration, 2015) and many of
the in-service pavements running on decades of service,
the problem of maintaining infrastructure has become a
priority (American Society of Civil Engineers, 2013).
Maintenance and rehabilitation have led/can lead to
traffic delays and back-ups. The queuing of vehicles has
been shown to increase crash frequency, and ultimately
is viewed negatively by citizens, taxpayers and state
governments (Transportation Research Board, 2003).
Data from 2010 shows a crash in a one lane closure on

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/11 1



a two lane interstate system increases travel time
from about 8 min to over 75 min when traffic levels go
above the construction zones capacity of 1500 cars/hr/
lane (Haseman, Wasson, & Bullock, 2010). Others (U.S.
Department of Transportation Federal Highway Admini-
stration, 2005) have shown that lane closures during
peak travel times cause queuing and therefore lead to
crash events and reduced travel times. This leads to
significant cost impacts on businesses, state agencies,
and consumers utilizing the roadways within a state.

As recently as 2014, the Indiana Department of Trans-
portation (INDOT) and other transportation agencies
are transitioning to overnight lane closures for roadway
construction to attempt to take advantage of significant
reductions in traffic volumes. Traffic volumes usually
peak around 89 a.m. and again around 5-6 p.m.; in
contrast the traffic volumes are at a minimum from
about 9 p.m. to 6 p.m. (Haseman et al., 2010). Agencies
seek to take advantage of traffic level reductions with
nighttime lane closures (INDOT, 2013, 2014b), attempt-
ing to minimize the impact to the traveling public.
Typically, for roads with speeds below 45 mph, the queue
distance can be used as a quantification to the delay that
a member of traveling public might encounter. Recent
data from the Joint Transportation Research Program
(JTRP) at Purdue University shows that in the state of
Indiana a traveler can expect at least a 10-mile queue
at midnight of speeds less than 25 mph on Interstate-65
(I-65) (Haseman et al., 2010), one of the major interstates
that traverses the state of Indiana. One example, on June
12, 2015, during a period of nighttime closure, an 18-mile
queue on I-65 was observed around 1 a.m. While these
statistics show vehicle queuing even during nighttime
construction, it is significantly reduced compared to the
delays that would be associated with daytime operations.

In addition to reducing congestion, nighttime road-
way construction attempts to increase safety. A strong
correlation has been established between queuing and
traffic delays leading to higher crash numbers (Haseman
et al., 2010). As such, the construction and maintenance
during low traffic times helps to reduce events and
increase construction employee and driver safety.

‘While helpful in achieving reductions in travel times,
queuing, and crashes, overnight construction has caused
an increase in contract prices for similar sized projects
occurring during normal business hours (Ellis, Herbsman,
& Chheda, 1992; Hinze & Carlisle, 1990-2; Minchin et al.,
n.d.). Nighttime lane closures force contractors to work
quickly under a tight time constraint to allow adequate
strength development on concrete pavements before the
roadway must reopen to traffic (INDOT, 2014c). For
example, current specifications in Indiana for patches less
than 15 feet in length have been recently changed to
flexural strengths of 300 psi at 24 hours (Antico, De la
Varga, Esmaeeli, Nantung, Zavattieri, & Weiss, 2015;
INDOT, 2014c). Agencies might also typically include
penalties or liquidated damages for contractors who are
not able to achieve acceptable strength in time to open the
roads before the general public hits its morning high
traffic levels, and are often looking at obtaining opening

times of about six hours from placement (INDOT, 2014a).
For the project discussed herein, liquidated damages
can be assessed to the contractor for failing to open the
roadway to traffic at the end of the lane closure period
(INDOT, 2014a). This tight schedule leads to contrac-
tors increasing their bids in order to account for risk on
these types of projects.

This project investigated approaches to improving
the mix design and specification and construction
practices of patches in concrete pavements. Further,
this project examined methods to predict opening times
with increased accuracy and reduced risk. Specifically,
it examined issues associated with temperature fluctua-
tions and flexural strength prediction.

3. SUMMARY OF THE MAIN FINDINGS OF THIS
PROJECT

3.1 Site Visits for Rapid Repair, HES Concrete Projects
(Utilizing MIMTL from SPR-3858)

Site visits were investigated as a part of INDOT
SPR-3905 and occurred at an ongoing pavement
rehabilitation project on US Highway 30 in northwest
Indiana. A combination of short (<15 feet) and long
(15 feet and greater), full-depth high early strength
concrete patches were constructed under INDOT
Project No. R-35341. The project site consisted of two
lanes in each direction, from the Illinois border through
the city of Dyer, IN, and briefly beyond Calumet
Avenue. Two initial site visits were performed in mid-
August 2014 to evaluate the project setting and obtain
preliminary data. Three more site visits occurring in
September and early October 2014 supplied the bulk
of the presented data. All site visits were overnight
construction sequences, with the exception of the last
visit in early October, which was a daytime visit.

An example of the typical process followed by a
contractor was recorded for HES concrete repair on
US 30 in northern Indiana and is described in the
following paragraph (Todd, 2015; Wilson et al., 2016).
For this project, lane closure began at approximately
6 p.m. when the contractor initiated a traffic control
plan to divert vehicles into a single lane of traffic in
each direction. From 6 p.m. to 7 p.m., the concrete
pavement was saw cut to enable the damaged concrete
to be removed. The demolition and removal crew began
to remove the damaged concrete between 7 p.m. and
9 p.m. A jackhammer or drop hammer was used to crush
the damaged concrete, and it was removed with a track
hoe or other machine. The base, subbase, dowels, and
tie bars were prepared from 9 p.m. to 10 p.m. Speci-
fically for partial depth patches, the patch area was
sandblasted clean, and a bonding agent was applied to
horizontal and vertical surfaces. For full depth patches,
coarse aggregate was added to the subbase and leveled,
with the purpose of establishing drainage. A receptive
pocket for the tie bars was drilled into the existing
pavement, and the bars were placed. From 10 p.m. to
11:30 p.m., the HES repair concrete was cast into the
patch area. Hydration retarder was added at the batch

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/11



plant, and accelerating admixture was added on site,
just prior to discharge of the concrete. The concrete
was finished immediately, and from 11:30 p.m. to 12:30
a.m., the patches were covered with plastic and thermal
blankets while the quality assurance/quality control sam-
ples were collected. The concrete strength was periodi-
cally tested, and the repaired section was opened to
traffic between 5 a.m. and 6 a.m. (provided the specified
opening strength was achieved). If the required strength
was not achieved and the repaired pavement was not
opened to traffic by 6 a.m., penalties would be applied. In
this repair methodology, the HES concrete is expected to
have gained the target strength over-night so that it can
be opened to traffic early the following morning.

3.2 Temperature of Field-Produced Concrete

The temperature profiles from two site visits at
the INDOT HWY 30 repair project are shown in
Figure 3.1. The results for temperatures shown were
measured in a repair patch in the pavement, in a field
cast concrete beam, and of the air temperature near the
samples. The temperature in the concrete patches read
in excess of 50°C and 60°C for cool and warm nights
respectively. This points out that the concrete pave-
ments are reaching a substantially higher temperature
and a substantially higher equivalent age than flexural
beams after as little as six hours (in real time).

3.3 Flexural Strength under Variable Curing Conditions

A testing plan was developed to investigate the influence
of temperature on the rate of strength development and
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Figure 3.1 Temperature profile of warm and cool nights for
different concrete geometries at US Highway 30 INDOT
repair project.

the resulting long-term strength, which utilized a
temperature matched curing (TMC) procedure. TMC
enabled concrete beam specimens to be subjected to
temperatures experienced in the field. TMC was
achieved using heating blankets layered around the
concrete beam test specimens. Using heating blankets,
construction blankets, and plastic on both the bottom
and top sides of the specimens, high temperature
conditions similar to those experienced in patches were
achieved. Figure 3.2 shows the temperature matched
curing beam configuration on a project site.

A common trend began to reveal itself as tempera-
ture matched curing was carried out on several field
visits. The beams subjected to elevated temperatures, or
the ones being heated in the temperature matched
curing condition, typically have a large, initial strength
gain at early ages, up to 4-6 hours for this mixture.
Thereafter, TMC beams develop strength at a minimal
rate. Traditional views suggest higher temperatures
lead to an accelerated reaction or higher degrees of
hydration at earlier ages and therefore higher flexural
strengths (ACI Committee 308, 2001; Eren, 2002; Kim,
Moon, & Eo, 1998). Compared to temperature match
cured beams, air cured beams experienced a more
constant strength development for both early and late
ages. The beams cured at higher temperatures had a
lower long-term strength. This is problematic since
while it is good to open the pavement quickly, problems
can arise in long-term durability, strength and fatigue
performance due to the lower strengths.

For the HES mixture in this project, a crossover in
flexural strength between air cured and TMC beams
was observed at ages between four and eight hours. The
air cured beams flexural strength surpassed that of the
temperature matched curing beams beyond this cross-
over. In addition, the air cured beams continued to gain
strength at a greater rate than that of the TMC beams.
This repeatable observation is being called a crossover
strength and has been seen consistently in the field. An
example of this is shown in Figure 3.3 for the Site Visit
2. It can be seen that the TMC beams show a higher
strength before 6 hours than the air cured beams, then
the rate of strength gain decreased dramatically,
resulting in lower rates of strength gain at later ages.
This project examined two potential causes for this
phenomena: sulfate imbalance and self-desiccation. As
such, this was examined in greater detail.

3.4 Using a Nondestructive Testing (NDT) Method for
Strength Determination (Windsor Pin)

Nondestructive testing (NDT) has become a popular
method of estimating the strength of in-place concrete
structures in recent times. This section investigates
the penetration resistance (Windsor Pin test) (IAEA,
2002; Malhotra & Carino, 2004). The research team
was asked to evaluate whether a new device would be
able to help provide an indication of when sufficient
strength was reached. This new device is a Windsor
pin, manufactured by NDT James Instruments Inc.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/11 3



(b)

Figure 3.2 Field images of (a) temperature matched curing beams at a trial batch and (b) temperature matched curing beams and

air cured on a site visit.
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Figure 3.3 Flexural strength results for Site Visit 2 on 09/17/
2014.

The Windsor Pin System is “a unique instrument for
measuring the strength of new or existing construction
materials in situ utilizing the established principle of resis-
tance to penetration” (NDT Supply, n.d.). Simplified,

the spring-loaded device shoots a steel pin into the
surface of a concrete system, and the depth of pene-
tration is then measured using the needle micrometer.
This penetration is then correlated to a compressive
strength of the concrete being measured.

The Windsor Pin was utilized during a trial batch in
late September 2014 at an Irving Materials Inc. ready-
mix plant in West Lafayette, IN. The goal of this site
visit was to compare actual measured flexural strength
results to that of those provided by the Windsor Pin.
The testing was to evaluate the possibility of imple-
menting this nondestructive test method as a means
of predicting pavement strengths for opening to traffic.
At ages of 4, 6, 8, and 12 hours, three flexural beam
samples were tested to determine their flexural strength.
At the same ages, each beam was “shot” with the
Windsor Pin system ten times to provide an estimate of
the concrete’s compressive strength. For the compara-
tive purposes for this study, the compressive strength
was converted to a flexural strength using the ACI
definition of modulus of rupture of concrete (ACI 318-
14, 2014).

Results from the Windsor Pin testing showed extre-
mely high variability with statistical ranges of 150 psi or
more, even considering that ten measurements were
recorded to produce a larger sample set for a better
statistical average. Figure 3.4 illustrates the data at each
age of the calculated flexural strength from the Windsor

4 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2019/11
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Figure 3.4 Calculated flexural strength of Windsor Pin and
actual third-point bending results.

Pin. At ages 4 and 6 hours, Windsor Pin values over-
estimate the flexural strength; at 8 hours, they are a
good representation; and at 12 hours, they under-
estimate the measured flexural strength values. High
inaccuracy in the Windsor Pin results puts into doubt
the ability of its implementation as a reliable means of
nondestructive testing, specifically to be used as a tool
for estimating traffic opening of pavements or patches.
As a result, this approach is not recommended for
opening to traffic.

3.5 Effects of Self-Desiccation on HES Concrete (Role of
Water)

First, it should be noted that self-desiccation occurs
in every concrete mixture. Self-desiccation occurs
when the reaction of cement and water results in a
volume reduction known as chemical shrinkage (i.e.,
the volume of reacted products is smaller than the origi-
nal constituent materials (cement and water) (Radlinska
& Weiss, 2011; Fu, 2011). When the system is fluid (at
very early ages), the volume of the material simply
reduces. However, once the material has set (i.e.,
solidified gaining a rigid structure) this volume reduc-
tion results in the expansion of vapor filled spaces in the
matrix (Sant, 2007). These vapor filled spaces occupy
the largest of the pores. In high w/c mixtures, this has
little impact on the hydration process as the vapor filled
spaces occur in very large pores and have little impact
on the remaining pore fluid (i.e., the water activity
remains high). In contrast, low w/c mixtures have a finer
pore structure and a decreased amount of water, thus
vapor filled spaces occur in smaller pores, thereby
reducing the activity of the water (reducing the measured
relative humidity (RH) of these mixtures (Barrett, Miller,
& Weiss, 2015). This can reduce the rate of hydration to

such an extent that the hydration eventually stops
(Persson, Bentz, & Nilsson, 2005). This can also increase
the capillary pressure, thus increasing the shrinkage of
these mixtures, making them more susceptible to
cracking (Montanari, 2017). Considering that HES con-
crete typically contains a low w/c, the effects of sufficient
self-desiccation can negatively impact the system.

In order to demonstrate the effects of self-desicca-
tion, cement pastes with a w/c of 0.42 and 0.28 were cast
in a sealed condition (no extra curing water) and a
saturated curing condition (extra curing water was
added). The cumulative heat released from isothermal
calorimetry for sealed and saturated samples, the
internal relative humidity (RH), By (which is the rate
of hydration of the sealed system with respect to the
rate of hydration in the saturated system), and the
flexural strength of sealed and saturated samples (as
determined from Ball-on-3-Ball testing experiments)
were measured and shown in Figure 3.5.

The impact of sufficient self-desiccation on hydra-
tion, RH, S5, and strength is shown in Figure 3.5 with
mixtures with a w/c of 0.28 and 0.42. For the mixtures
with a w/c of 0.28, the cumulative hydration of the
sealed system deviated from the saturated system at
around 1 day, and this occurred when the RH in the
sealed system was approximately 92%. The correspond-
ing B value was nearly 0.8 at 1 day, which implies that
rate of hydration was already reduced by 20%. This
indicates that the impact of sufficient self-desiccation
starts at early ages when a mixture’s w/c is low. As such,
the corresponding strength of the sealed and saturated
system began to deviate at one day. For the mixture
with a w/c of 0.28, the rate of hydration (and strength
gain) began to slow to the point of nearly ceasing when
the RH reached 92% and (;=0.8.

Figure 3.5 shows the mixture with a w/c of 0.42. The
hydration of the sealed system did not deviate from the
saturated system as there was initially sufficient water
for continued hydration. This agrees with the Power’s
Model (Jafari Azad, Suraneni, Isgor, & Weiss, 2017)
where the entire volume of cement can be hydrated
by the initial mixing water. The calculated value for
By remained at 1.0 through the 7-day testing duration
because the rate of hydration of the sealed system was
never exceeded by that of the saturated system. There is
little benefit in terms of hydration when additional
water is supplied to a mixture with a w/c of 0.42 during
the first 7 days provided evaporation is negligible. The
RH of the system with w/c of 0.42 never fell below 96%
by 7 days. As such, the strength of the sealed system
was similar to that of the saturated system because
sufficient self-desiccation was not taking place. For
HES concrete mixtures, with a low w/c, the effects of
self-desiccation can negatively impact the hydration
and strength development.

In addition, maturity methods that are used to
predict the target strength of concrete can be modified
to account for self-desiccation, thus increasing the accu-
racy of strength predictions as concrete mixtures with a
low w/c run out of water (and sufficient self-desiccation
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Figure 3.5 Cumulative heat released, By, RH, and flexural strength for pastes with a w/c of 0.28 and 0.42. Sealed and saturated
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occurs leading to a decrease in the rate of strength gain).
The S parameter can be used in the modified methods
along with the measured internal RH of the concrete.
More on this topic can be found in the publications that
resulted from the work done in this project listed in
Chapter 5.

3.6 Accelerator Dosage Variations at Ambient and
Elevated Temperatures (Optimum Sulfate Levels)

Temperatures tested for the laboratory program
included 10°C, 23°C, 37.5°C, and 50°C to evaluate the
HES mixture over a wide range. Evaluating higher tem-
perature provides comparison to standard tempera-
tures. This provides insight into performance that may
be expected in the field.

The US Highway 30 project utilized accelerator
dosages ranging from 0 to 60 ounces per one hundred
pounds of cement (oz/cwt). Therefore, increments of 0,
20, 40, and 60 oz/cwt were implemented in the testing
matrix. The most common dosage seen in the field was
at 40 oz/cwt. Thus, dosages above and below were eva-
luated and compared. It was of interest to test variable
ranges to determine the accelerators role on high early
strength mixtures performance, especially at higher
temperatures.

As expected, at ambient temperatures (i.e., 23°C) as
the accelerator dosage was increased, the hydration
reaction (determined from isothermal calorimetry) was
accelerated as shown in Figure 3.6.

As the temperature was increased (as in the 50°C
experiment), the accelerating properties of the admixture
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Figure 3.6 Rate of hydration from isothermal calorimetry at
23°C at various accelerator dosages.

decreased as shown in Figure 3.7. It can be seen that at
50°C the accelerating admixture was proven to be
ineffective at accelerating the hydration reaction.

Another major finding from the isothermal calori-
metry is that higher temperatures and accelerator dosa-
ges are related to the sulfate level or balance. At higher
temperatures and accelerator dosages, it appears that
the peak consistent with the hydration of the calcium
aluminate has shifted which may suggest an imbalance
in the optimum sulfate levels under these conditions. It
appears the sulfate optimization has been lost when the
HES mixture is exposed to high accelerator dosages and
high temperatures.

Research has illustrated cement exposed to calcium
nitrite based accelerating admixtures, such as the
accelerating admixture used in this study Daraset 400
(W. R. Grace Inc., 2007, 2010), may lead to changes in
the aluminate- sulfate balance and excessive retardation
of the Alite reaction (Lerch, 1946; Roberts & Taylor,
2007; Sandberg & Roberts, 2003, 2005). If insuffi-
cient soluble sulfate is present, the aluminate-sulfate
reaction may be altered (Pourchet, Regnaud, Perez, &
Nonat, 2009; Sandberg & Roberts, 2003, 2005).
Sandberg and Roberts discussed that because calcium
nitrite has an ability to stabilize iron hydroxide, this
may result in not enough soluble sulfate to keep the
iron soluble, therefore causing retardation of the Alite
hydration. Consequentially a sensitivity to low soluble
sulfate levels causes damage to the aluminate-sulfate
balance (Sandberg & Roberts, 2005). The observed
sulfate imbalance may be a consequence of the
interaction of the calcium nitrite accelerator in the
system.

This could also help to explain the reasoning for a
crossover strength discussed previously in Chapter 2,
which is observed in beams exposed to temperature
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Figure 3.7 Rate of hydration from isothermal calorimetry at
50°C at various accelerator dosages.

matched curing. Further discussion of the interaction
between calcium nitrite in the cement system may be a
cause of strength deterioration. If the Alite hydration is
retarded due to a change in the available sulfate from
solubility issues, this could potentially be the cause
of the observed crossover (Roberts & Taylor, 2007;
Sandberg & Roberts, 2003, 2005). The Alite reaction is
what provides early strengths to cement hydration.
Work by Niemuth and others has presented data illu-
strating isothermal calorimetry as a method for optimi-
zing sulfate contents in cementitious systems (Niemuth,
De la Varga, Barcelo, & Weiss, 2012; Niemuth, 2012;
Sandberg & Roberts, 2003).

As a result of the heat release data evaluated at four
temperatures and four accelerator dosages, two main
conclusions were drawn. First, at higher temperatures,
the accelerating admixture does not provide an accel-
erating effect to the hydration reaction for this mixture.
This finding places in doubt the need for accelerating
admixture in the application of HES concrete mixtures
if adding it will not accelerate the reaction. Second,
the sulfate content of these mixtures appears to be
imbalanced at higher temperatures and accelerator
dosages. An imbalance in the sulfate level could be
the cause behind the observed crossover strength and
a reasoning for deterioration in long-term flexural
strength development for HES mixtures. Concrete
pavements that do not reach adequate strengths will
likely fail prematurely under traffic roads. Continual
replacement of concrete patches due to premature
failure would be extremely costly to agencies.

Although at ambient temperatures (23°C) the mix-
ture appeared to be properly sulfated (allowing the
accelerating admixture to accelerate the reaction),
further work investigated how much additional sulfate
should be added to the system in systems with elevated
temperatures in order for the accelerating admixtures to
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be effective in accelerating the hydration reaction. It
was decided that a blend of 50% industrial gypsum and
50% casting plaster would be used in combination to
represent commercial gypsum in order to provide sul-
fate to the mixture. A 1% and 2% addition of sulfate
was added to systems with varying amount of accel-
erating admixture, and the rate of heat released through
isothermal calorimetry was measured. Figure 3.8 shows
results for the 50°C experiment with a 1% sulfate addi-
tion. As the dosage of accelerating admixture is increased
from 0, to 20, 40, and 60 oz/cwt., a transformation in
the curves can be seen towards the left, indicating the
acceleration of the hydration reaction. In addition, the
sulfate levels are illustrated to be in balance, based on
observation of the sulfate depletion peak to the right of
the main hydration peak (Niemuth et al., 2012), as
compared to data presented not including added
sulfate. With a 1% addition of sulfate, the accelerating
admixture was able to accelerate the hydration reaction
at higher temperatures as the admixture dosage was
increased.

Conclusions from experimental evaluation of added
sulfate to HES mixtures led to interest in finding how
this value added method extends to field applications.
Therefore, concrete beams were cast with and without
sulfate additions and the flexural strength was deter-
mined. TMC cured beams and ambient air cured beams
were tested. A hypothesis was generated following con-
clusions of the role of additional sulfate, which believed
that added sulfate will help the HES mixture to con-
tinue to gain strength when exposed to high tempera-
tures. This is in stark contrast to the inability of the
mixture to gain strength after the crossover at its parti-
cular state.

The hypothesis was validated by the results, which
are presented in Figure 3.9. At six hours, the crossover
is occurring which was observed repeatedly in the field.
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Figure 3.8 Rate of hydration from isothermal calorimetry at
50°C and 1% SO3 replacement at various accelerator dosages.
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Figure 3.9 Flexural strength (psi) measured at 6 and 48 hours
of laboratory cast air cured beams, temperature match cured
beams, and temperature match cured with 1% additional
sulfate beams.

6 hrs

Most importantly however, it can be observed that air
cured beams continue to generate strength at an app-
reciable rate. Similar to observations found in field
investigations, TMC beams without additional sulfate
showed a decrease in the rate at which flexural strength
is generated. However, evaluating TMC beams with
1% additional sulfate illustrates a change in behavior.
An improvement has been made in the mixtures ability
to continue to gain strength when exposed to extreme
temperatures. While not matching the results of air
cured beams, a drastic improvement is made in compa-
rison to the current mixtures performance. The ability
to continue to generate strength is indicative of an
improved long-term durability for HES mixtures.

3.7 Activation Energy Determination

Data obtained from isothermal calorimetry facili-
tated the computation of the activation energy of this
HES mixture. The activation energy was calculated for
mixtures without accelerator at temperatures of 10°C,
37.5°C, and 50°C in reference to standard temperature
23°C. Results of activation energy calculations are
plotted in Figure 3.10 versus degree of hydration for
each of the three mentioned temperatures. The average
values are similar to expected, ranging from about
350 kJ/mol to 450 kJ/mol (Malhotra & Carino, 2004;
Sant, 2007).

It can be observed from the plot that as the
temperature increases, the activation energy decreases,
a typical trend. However, the continued decrease from
37.5°C to 50°C is not expected considering work by
Freiesleben Hansen which suggested that above 20°C,
the activation energy of cement mixtures should remain
constant (Carino & Lew, 2001; Freiesleben Hansen &
Pedersen, 1977). Their work suggests that up to 20°C
the activation energy decreases linearly, however,
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beyond that temperature, it is a constant multiplied by
the gas constant. Considering that the activation energy
is used in the maturity approach to predict the strength
of HES concrete, caution should be exercised when
choosing an activation energy value (especially when
elevated temperatures are expected).

3.8 Durability and Fracture Mechanics of Materials
Containing Accelerating Admixtures Cured at Ambient
and Elevated Temperatures

Mechanical testing of mortar samples was performed
to examine fracture properties of elastic modulus,
fracture toughness (K;c), fracture energy (Gic), and
critical crack tip opening displacement (CTODc) of the
HES mixture. The observed crossover strength pro-
vided questions to the potential of a change in fracture
properties with and without accelerator at an array of
temperatures, most notably high temperatures. There-
fore, temperatures of 23°C, 35°C, and 50°C and
accelerator dosages of 0 and 40 oz/cwt were inputs for
a testing matrix of fracture properties. Note that 35
rather than 37.5°C was used for these studies due to
available laboratory space.

Figure 3.11, displays the results for fracture testing at
various temperatures and an equivalent age of 28 days.
Raw data was analyzed using a simplified analysis
procedure of the Jenq-Shah Two Parameter Fracture
Model proposed by Jansen, Weiss, and Schleuchardt
(Bazant, 2002; Jenq & Shah, 1985; Jensen & Hansen,
2001; Shah, 1990).

The figure displays the results of (a) elastic modulus,
E (b) fracture toughness, Kjc, (¢) fracture energy,
Gic, and (d) critical crack tip opening displacement,
CTODc. In Figure 3.11(a), the data for elastic modulus

is presented for each temperature and accelerator
dosage. The results indicate that as temperature
increases, the elastic modulus of samples without
accelerator decreases. At room temperature, the sample
with and without accelerating admixture have drasti-
cally different elastic moduli. However, as the tempera-
ture increases, the gap lessens, as the influence of
accelerator on the HES mixtures elastic modulus
becomes less apparent. From Figure 3.11(b), Kic app-
ears to slightly decrease as the testing temperature is
increased, for the mixtures not containing accelerator.
Once accelerating admixture is added however, the
Kic of this mixture remains constant with varying
temperature.

The remaining two figures in Figure 3.11, (c) and (d),
do not provide further insight into potential reasoning
behind the observed crossover strength. Gyc and CTODc,
related to fracture and critical crack width opening,
look as if to be relatively constant at each temperature
and accelerator dosage. The bulk of the data from
fracture property evaluation was not conclusive in
providing a definite answer to the possible correlation
between fracture and the observed crossover strength.
The result of this work leads the authors to believe
that the crossover strength is not directly related to a
fracture property of the mixture.

3.9 Shrinkage and Stress Reduction

Much of this work has illustrated a need to improve
the performance of HES concrete mixtures. Data has
shown internal curing as a cost effective, value added
methodology that reduces cracking and improves the
durability and service life of concrete mixtures (Barrett,
2015; Barrett, Miller, & Weiss, 2014; Bentz & Snyder,
1999; Bentz & Weiss, 2011; De la Varga et al., 2014;
Miller, Barrett, Zander, & Weiss, 2014; Schlitter, 2010;
Schlitter, Senter, Bentz, Nantung, & Weiss, 2010).

Internal curing has been shown to be a method that
can increase the RH and reduce autogenous shrinkage
in mixtures with low w/c’s (Barrett, De la Varga,
Schlitter, & Weiss, 2011; Barrett et al., 2014; Barrett
et al.,, 2015; Bentz & Weiss, 2011; Castro, Peled, &
Weiss, 2016; Golias, Castro, & Weiss, 2012; Schlitter,
Bentz, & Weiss, 2013; Yildirim, Meyer, & Herfellner,
2015). The addition internal curing water also benefit
mechanical and durability properties (Castro et al.,
2016; Golias et al., 2012). Figure 3.12 shows measured
autogenous shrinkage for a plain and internally cured
mortar mixture with a w/c of 0.28. The inclusion of pre-
wetted lightweight aggregate (LWA) reduced the free
autogenous shrinkage by nearly 50%.

Figure 3.13 shows the stress that developed when the
shrinkage was restrained for both a plain and internally
cured mortar with a w/c of 0.28. The temperature was
decreased at 7 days, and the plain system developed
450 psi of tensile stress and a cracked when the stress
reached 550 psi (a 100-psi remaining stress capacity),
while the internally cured system had only 300 psi of
tensile stress and cracked at 650 psi (350 remaining
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Figure 3.13 Restrained shrinkage of pastes with a w/c of 0.28 (dual ring test).

stress capacity). The internally cured system developed
less stress by 7 days than the plain system while having
more remaining stress capacity during the temperature
decrease. In addition to the stresses occurring, the plain
system required a temperature decrease of nearly 4°C to
crack while the internally cured system required a
temperature decrease 17°C to crack, implying that the
internally cured system is more robust to thermal
cracking. HES concrete mixtures (typically containing
low w/c’s) can benefit from additional water through
internal curing.

4. FINAL CONCLUSIONS AND
RECOMMENDATIONS

This work has illustrated some primary issues that
can limit strength development and decrease the
accuracy of strength predictions in HES concrete
mixtures. First, internal curing can be used to supply
additional curing water to HES mixtures, thus improv-
ing durability, hydration, and strength development
(i.e., mechanical properties). Second, when the tem-
perature of HES concrete patches is expected to be
elevated, the balance of sulfates need to be considered.
While the experiments showed that additional sulfate
can improve the effectiveness of accelerating admixture,
this is likely not practical for field use. Rather,
experiments to determine if the sulfate balance is not
attained at high temperatures with admixtures appears
to be in order. Third, modified maturity methods that
account for self-desiccation can be used to increase the
accuracy of target strength predications. This would
consist of adding a term (By) to account for self-
desiccation to standard current practices. It appears
that patches may benefit from internal curing which
will enable hydration to occur while reducing shrink-
age. Finally, excessive cement contents should be
restricted.

5. ADDITIONAL INFORMATION

The findings of this report can be found in more
detail in the following master’s theses:

Todd, N. T. (2015). Assessing risk reduction of high
early strength concrete mixtures (Master’s thesis). Retri-
eved from http://docs.lib.purdue.edu/dissertations/
AAI10062227

Wilson, C. A. (2018). Improving the performance of
high early strength concrete by controlling self-desicca-
tion and mitigating shrinkage (Master’s thesis). Oregon
State University. Retrieved from https://ir.library.
oregonstate.edu/concern/parent/w95055483/file_sets/
ht24wq6lg
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